Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration.
نویسندگان
چکیده
Fluid shear stress modulates vascular production of endothelial superoxide anion (O2*-) and nitric oxide (*NO). Whether the characteristics of shear stress influence the spatial variations in mitochondrial manganese superoxide dismutase (Mn-SOD) expression in vasculatures is not well defined. We constructed a three-dimensional computational fluid dynamics model simulating spatial variations in shear stress at the arterial bifurcation. In parallel, explants of arterial bifurcations were sectioned from the human left main coronary bifurcation and right coronary arteries for immunohistolocalization of Mn-SOD expression. We demonstrated that Mn-SOD staining was prominent in the pulsatile shear stress (PSS)-exposed and atheroprotective regions, but it was nearly absent in the oscillatory shear stress (OSS)-exposed regions and lateral wall of arterial bifurcation. In cultured bovine aortic endothelial cells, PSS at mean shear stress (tau ave) of 23 dyn/cm2 upregulated Mn-SOD mRNA expression at a higher level than did OSS at tau ave = 0.02 dyn/cm2 +/- 3.0 dyn.cm(-2).s(-1) and at 1 Hz (PSS by 11.3 +/- 0.4-fold vs. OSS by 5.0 +/- 0.5-fold vs. static condition; P < 0.05, n = 4). By liquid chromatography and tandem mass spectrometry, it was found that PSS decreased the extent of low-density lipoprotein (LDL) nitration, whereas OSS increased nitration (P < 0.05, n = 4). In the presence of LDL, treatment with Mn-SOD small interfering RNA increased intracellular nitrotyrosine level (P < 0.5, n = 4), a fingerprint for nitrotyrosine formation. Our findings indicate that shear stress in the atheroprone versus atheroprotective regions regulates spatial variations in mitochondrial Mn-SOD expression with an implication for modulating LDL nitration.
منابع مشابه
Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells.
Physiological levels of laminar shear stress completely abrogate apoptosis of human endothelial cells in response to a variety of stimuli and might therefore importantly contribute to endothelial integrity. We show here that the apoptosis-suppressive effects of shear stress are mediated by upregulation of Cu/Zn SOD and NO synthase. Shear stress-mediated inhibition of endothelial cell apoptosis ...
متن کاملInducible expression of manganese superoxide dismutase by phorbol 12-myristate 13-acetate is mediated by Sp1 in endothelial cells.
The expression of manganese superoxide dismutase (Mn-SOD), an important component of the cellular defense system against oxidative stress, is induced in response to a variety of stimuli, including cytokines and phorbol esters, in endothelial cells. To define the molecular mechanisms regulating the expression of Mn-SOD, we have characterized the promoter of the human Mn-SOD gene. In calf pulmona...
متن کاملInactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine.
Peroxynitrite has recently been implicated in the inactivation of many enzymes. However, little has been reported on the structural basis of the inactivation reaction. This study proposes that nitration of a specific tyrosine residue is responsible for inactivation of recombinant human mitochondrial manganese-superoxide dismutase (Mn-SOD) by peroxynitrite. Mass spectroscopic analysis of the per...
متن کاملEffects of aortic coarctation on aortic antioxidant enzymes and NADPH oxidase protein expression.
Abdominal aortic coarctation above the renal arteries leads to severe hypertension above the stenotic site and provides a model for simultaneous testing of the effects of increased and decreased pressure and consequently shear stress in the same animal. The effects of increased pressure, per se, on oxidative stress and antioxidant enzyme expression is unknown. We studied the protein expressions...
متن کاملPulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation.
Shear stress regulates endothelial nitric oxide and superoxide (O2-*) production, implicating the role of NADPH oxidase activity. It is unknown whether shear stress regulates the sources of reactive species production, consequent low-density lipoprotein (LDL) modification, and initiation of inflammatory events. Bovine aortic endothelial cells (BAECs) in the presence of 50 microg/mL of native LD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 6 شماره
صفحات -
تاریخ انتشار 2008